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Abstract 
To calculate high-resolution images it is necessary to 
convolute the wavefunction generated by scattering 
from the specimen with the microscope objective-lens 
wavefront aberration function. This is usually done 
by a multiplication of the transfer function and the 
specimen exit-surface wavefunction in reciprocal 
space followed by a numerical integration over all 
scattering wave vectors. Examination of the analytic 
behaviour of the wave-front aberration function in 
the complex plane shows that, for simple scattering 
functions, it is possible to perform the integral analyti- 
cally using the method of stationary phase. Analytic 
results for the imaging of disordered planes of atoms 
are compared with fast Fourier transform calculations 
as a function of defocus. The limitations of stationary- 
phase integration are also discussed. 

The calculation of high-resolution images in electron 
microscopy can be divided into two parts. The ampli- 
tude distribution as a function of scattering wave 
vector is first calculated using some model for the 
potential in the specimen and an appropriate theory 
for electron scattering (Spence, 1980). If the scattering 
is relatively weak the specimen can be considered as 
either a strong or a weak phase object (Cowley, 1975). 
Alternatively, a full dynamical diffraction calculation 
using either Bloch-wave (Bethe, 1928) or multislice 
methods (Cowley & Moodie, 1957) could be per- 
formed to give the wave function at the exit surface 
of the crystal. 

The second part of the calculation considers the 
effects of the microscope objective lens and its aberra- 
tions in forming the image. This could be done by a 
convolution in real space but it is more convenient 
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to replace this by a multiplication of the exit-surface 
wavefunction and the wave-front aberration func- 
tions in reciprocal space followed by an integration 
over all relevant scattering wave vectors (Spence, 
1980). The wave-front aberration is an additional 
phase function exp [ix(u)] where 

X(U)=(~rl;t)[(C~12),X'u'-fa2u2], (1) 

where u is the scattering wave vector, ,t is the electron 
wavelength, f is the defocus and C~ is the lens 
spherical aberration. 

For high-energy electrons, scattering angles are 
small and the scattering wave vector is assumed to 
lie in a plane parallel with the specimen surface. It 
is then more convenient to write the wave-front 
aberration function in terms of the scattering angle 

x(O)=(Tr/A)[(C~/2)O4-fO2]. (2) 

Crystals scatter in directions given by the Bragg angles 
0g for the various crystal planes. The image amplitude 
is then given by 

A ( r ) = Z  d/(Og) exp[ix(Og)]exp(2rrirOg/A) (3) 
o~ 

where O(0g) are the complex scattering amplitudes 
for diffraction from the crystal (Spence, 1980). For 
single-atom scattering (Chiu & Glaeser, 1975) or scat- 
tering by amorphous objects or defects the summation 
should be replaced by an integration. 

A(r)=~ d/(O) exp[ix(O)]exp(2rrir. O/A)d20. (4) 

In the simplest case we can assume that the scattering 
is given by the weak-phase-object approximation 

~(O)=i f e (O)  (5) 

where fe(O) is the electron scattering factor. The 
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amplitude scattered becomes 

A(r) = 1 + i ~ fe(0) exp [ ix(0)] exp (2~-i0. r/A) d20 

(6) 

and as the scattering is weak the square of the electron 
scattering factor can be neglected in the expression 
for the intensity given below. 

l ( r ) =  1 - 2  j'f~(O) s in [x(O)+2r r0 . r /A]d20 .  (7) 

The function sin [X(0)] is a contrast transfer function. 
These equations form the basis of the theory for 
studying the contrast of single atoms or for investigat- 
ing the properties of the lens using the intensities 
observed in an image of an amorphous specimen. 
When scattering in a thin amorphous specimen is 
used to study the contrast transfer function it is 
assumed that the electron scattering factor does not 
change as a function of angle and that atoms are 
randomly distributed in the specimen. The intensity 
observed can now be written as 

l = J  1-2fe  sin X(0) d20. (8) 

This intensity distribution is studied by examining 
the ditiractogram which is a representation of the 
power spectrum in reciprocal space. Dittractograms 
can be taken in an optical bench or by directly com- 
puting the Fourier transform from digitized data. 

Taking a ditiractogram gives an intensity distri- 
bution 

I(0) = 4  sin 2 X(0) = 2 - 2  cos [2X(0)]. (9) 

A typical dittractogram shows a series of bright rings 
that represent the spatial frequencies that are 
optimally transferred by the lens (Thon, 1971). In the 
language of signal processing they are the pass bands 
suitable for high-resolution imaging and can be found 
using the conditions that the maxima of X(0) are at 
n~-. This gives the condition that the focus, f, is equal 
to nl/2CsA where n is an odd integer. The condition 
for the first pass band, n = 1, gives a defocus close to 
the Scherzer focus which we shall call the optimum 
defocus. Integration over all angles in the diffrac- 
togram gives the square of the image variance by 
Parseval's theorem. Since the work of Frank & A1-AIi 
(1975) and Erasmus & Smith (1982), the variance has 
been used directly in computer alignment schemes 
in high-resolution microscopy to set optimum 
defocus, and correct for beam-tilt misalignment or 
astigmatism. By ignoring the constant term and writ- 
ing the cosine in (9) in terms of exponentials it is 
possible to integrate 2cos2x(0)  over all angles 
directly to give 

-(~/2)(A/Cs)U2cos(~rf2/ACs-~/4). (10) 

It is only by assuming that the image was spatially 
invariant that we were able to perform the integration 
in a simple fashion. To treat the case of single-atom 

contrast the integral in (6) has to be performed 
numerically, usually by fast Fourier transform. 
Alternatively, the transfer function is approximated 
as being a constant up to an appropriate cut-off angle 
which defines an effective aperture. Scherzer (1949) 
in his classic paper on the imaging of single atoms 
used such an approach. 

Although powerful computers are now widespread, 
it is of some value to develop analytic approaches as 
they can very often give new insights into the problem. 
In this paper the methods of steepest descent and 
stationary phase (Dennery & Krzywicki, 1967) will 
be applied to integrals such as those given in (6). 
Both methods are best suited to integrations where 
the integral of g(x) can be rewritten as 

g(x) d x =  ~ expf(x)  dx. (11) 

We start by examining the behaviour of the integral 
as a function ofx  in the complex plane. As an example 
we consider the function exp (x2). As x increases on 
the real axis the function tends to infinity. On the 
imaginary axis it tends to zero and on lines at 45 ° to 
the axis the function has constant magnitude. The 
origin is clearly a minimum when going from - ~  to 
+oo and a maximum when going from - i v  to +ioo. 
It is, in fact, a saddle point and the imaginary axis 
is the line of steepest descent through that point. In 
the method of steepest descents the contour of 
integration is distorted to follow the steepest-descent 
line through the saddle point and the integral is 
approximated by the contribution from the region 
close to the saddle point. Saddle points are found by 
setting the first derivative o f f (x )  equal to zero. If the 
saddle point is at Xo, the function f(x) is quadratic 
in (x-Xo) in the neighbourhood of the saddle point, 
if terms of order (x - Xo) 3 and higher-order terms are 
neglected, 

f(x)=f(Xo)+f"(Xo)(X--Xo)2+O(x--xo) 3. (12) 

The integral can be transformed into an integral of 
the form e x p - K x  2 and the result is 

expf (x)  d x =  (2rr/A)'/2exp [f(Xo)] 

×exp[i(zr-a)/2], (13) 

where A is the magnitude off(xo) and a is its phase. 
In the method of stationary phase the contour is 

made to run along the level lines through the saddle 
point. Along these lines the variation of phase is at 
a maximum just as along the lines of steepest descent 
or ascent there is no change of phase. The integral is 
then transformed into a Fresnel integral of the form 

exp (ikx 2) dx. The final result of the integration is 
the same as the expression obtained using the method 
of steepest descents. 

The integral for the square of the variance given 
in (9) provides a good example of how these methods 
can be applied. We start by rewriting the integrand 
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in exponential form 

2 cos [ (~Cs/A)(04-2f02/Cs)]27r0 dO 

= ~ 2~r{exp (i~'CJ A )[ 04 -  2f02/C~ 

- ( iA / ~rC~) loge O] + exp ( - i~ 'CJ  A ) 

x[O4-2fO2/C~+(iA/lrC~) logeO]} dO. (14) 

An approximate map of the first exponential term is 
given as Fig. 1. The contour map in the complex plane 
is represented as it would be in a micrograph with 
the hills shaded white and the valleys black. As 0 
tends to infinity along lines in the complex plane at 
3Ir/8, 7~'/8, 11Ir/8, 157r/8 there are steep hills. 
Between these hills along lines at 0 = ~r/8, 5~r/8, 9~r/8 
and 13~r/8 there are deep valleys. The real and 
imaginary axes and lines at 45 ° are the level lies. We 
require an integration over the real axis from -oo to 
+oo which suggests that stationary-phase integration 
would be most appropriate. The saddle points are 
given by the condition 

03 -TO~ C, qz iX / 4IrC~0 = 0, (lS) 

where the upper sign represents the expression for 
the first exponential term and the lower sign the 
expression for the second exponential term. For the 
first exponential the saddle points are at 

O= +(f/Cs)a/2(l+izrACJ8f2).  (16) 

When AC~/2 <f2 ,  the second term can be neglected 
and the saddle points can be assumed to lie on the 
real axis. The contribution from the first exponential 
term at one of the saddle points is 

Ii = - I t ( f ~  Us) 1/2 exp (--iTrf2/ hCs + iTr/4)(A/f) 1/2. 

(17) 

Taking account of the fact that there are two saddle 
points but that the requirement is for an integral over 
half the range from 0 to oo, and then performing the 
same operation on the second exponential we get 

I =  -(zr/2)(A/Cs)l /E cos(zrfE/Acs-Tr/4) ,  (18) 

which is the same as was found by simple integration. 
We shall now consider the integral for the ampli- 

tude given as (6). For simplicity we shall only treat 
one-dimensional scattering from an atom. This could 
arise in practice if disordered planes of heavy atoms 
were stacked in a well defined sequence among 
ordered planes of light atoms, with the planes normal 
to the specimen surface (see Fig. 2). Scattering in a 
direction normal to the planes gives superlattice 
reflections corresponding to the repeat distance of 
the heavy-atom planes, while scattering in a direction 
lying in the plane is the same as scattering from an 
amorphous material. For the purposes of this paper 
an atom will be represented as a single Gaussian with 
a half width of about 0.5/~. Summation over four 
Gaussians is equivalent to the Doyle & Turner (1969) 
parameterization of the electron scattering factor. In 
fact an examination of the Doyle & Turner (1969) 
parameters shows that only two Gaussians are needed 
to represent most atoms to about 10% accuracy. The 
fact that the electron scattering factors do not have 
the correct asymptotic form for high scattering angles 
need not concern us in any discussion on high-reso- 
lution microscopy as these angles will be cut off by 
the transfer function. If the half width of the atom is 
R the electron scattering factor is 

fe(0) = C exp (-b02) 

where 

b = ( Rzr/ A )E(loge 2) -1. (19) 

Fig. 1. Map of the function exp (irr/A)(CsO4-2fO 2- iAloge 0/rr) 
for a defocus of 400/~ and a C s of 1 mm at 100 kV. The saddle 
points are marked with white dots and the integration contour 
is the x axis. Peak white is 0.5. The bar corresponds to 10 mrad. 

BEAM DIRECTION 

1 

\ 
DISORDERED PLANE 

Fig. 2. Diagram showing a possible arrangement of disordered 
planes of heavy atoms that might give rise to one-dimensional 
atomic diffuse scattering. 
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Incorporating this equation in (6), we can see that 
putting in the atomic scattering factor is equivalent 
to making the defocus complex. The effective 
imaginary defocus for the atom is 

R2'rr/A loge 2 

which is 30/~ for an atom of half-width 0-5/~ and 
would be about 120/~ for an atom of half-width 1 A. 
These values are very small compared with the 
optimum defocus and can usually be neglected except 
near Gaussian focus. If we neglect the factor i which 
multiplies the expression, the amplitude becomes the 
Fourier transform of the wave-front aberration func- 
tion with an appropriate complex defocus 

- iA(r)/C = S exp [(iz:/A )(C~04/2-f02 + 2rO)] dO. 

(20) 

In the weak-phase-object approximation, the 
intensity is twice the imaginary part of the above 
expression. The integral of (20) can also be written 
as a Fourier transform and in the next section we 
shall compare results obtained using stationary phase 
with numerical fast Fourier transforms of the wave- 
front aberration function. 

All the subsequent calculations refer to a micro- 
scope with an objective lens Cs of 1 mm operating at 
100 kV. The first passband in defocus occurs at f =  
(Csh) 1/2, which is 608/~. Microscopes operating at 
200 and 400 kV with the same value for optimum 
defocus would have objective-lens spherical aberra- 
tion coefficients of 1.5 and 2.0 mm respectively. These 
values are physically reasonable for microscopes 
operating today though the highest-resolution micro- 
scopes have Cs of order 1 mm at 400 kV. The optimum 

(a) 

J 

(b) 

(c) (d) 

Fig. 3. Maps of the function exp [(iO.57r/A)(CsO4-2fO2+4rO)] for (a) r = - 3  A, (b) r = 0  A, (c) r = 3 A  for 100 kV scattering from 
atoms of half-width 0-5 A. Peak white is 5.0 and the dots mark the saddle points. The contour of integration is the x axis and the 
bar corresponds to 10 mrad. (d) Map of the phase of the function for r = 0 A. Peak white in this map is 15.0 and black is -25-0. 
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defocus value is then 405/~. If we consider the various 
microscopes with the same value of optimum defocus 
then the only variable that changes is the magnitude 
of the characteristic scattering angle. If the scattering 
wave vector is expressed in Glaeser units (Hawkes, 
1980) (Cs1~3/4) -l, then the characteristic scattering 
angle is (A/C~) ~/4. As far as the lens transfer function 
is concerned an angle of 10 mrad at 100 kV becomes 
equivalent to 8.1 mrad at 200kV and 6.7 mrad at 
400 kV. 

To evaluate the amplitude given by (20) using the 
method of stationary phase we must first examine the 
behaviour of the function in the complex plane. At 
large values of 0 the function should be dominated 
by the spherical aberration term. Just as in the case 
of the image variance, there will be mountains along 
lines going through 37r/8, 7rr/8, 117r/8 and 157r/8 
with valleys along lines going through ~'/8, 5rr/8, 
97r/8 and 13rr/8. The level line is the real axis and 
again a stationary-phase integration is appropriate. 
The behaviour for small angles is affected by the 
defocus and the position terms. As the defocus 
increases, the hills along the lines from 3~'/8 to 1117"/8 
increase in size at the expense of the other hills. As 
can be seen from Fig. 3, which shows the maps for 
positions -3 ,  0, +3 /~  at a defocus of 600 A, there is 
a mirror symmetry going from negative to positive 
positions. 

The positions of the saddle points can be found by 
taking the derivatives of the argument of the exponen- 
tial given by 

o3-(f/Cs)O+r/¢,=O. (21) 

This cubic equation has three roots. If the quantities 
M and N are defined as 

M=[-r12C~+(r2/4C2-f3127C3~)I/211/3 (22a) 

N=[-r /2C~- ( r2 /4C2- f3127C3) ' / 2 ]  '/3 (22b) 

then the roots of the equation are 

01 = M +  N (23a) 

02 = - - ( M +  N ) / 2 + 3 u 2 i ( M - N ) / 2  (23b) 

O 3 = - ( M + N ) / 2 - 3 U E i ( M - N ) / 2 .  (23c) 

The first saddle point always lies close to the real axis 
along which we wish to integrate. When r2/4C2> 
f3/27C3, the other two saddle points lie off the axis 
and do not pass through the contour. For a given 
value of r their separation increases with decreasing 
defocus as can be seen from Fig. 4 which shows 
function maps for 3 A at a defocus of 1000, 800, 600, 
400, 200 and 0/~. 

If r2/4C 2 <f3/27C3 these other two saddle points 
are close together and lie on the integration contour. 
This can be seen in the contour image for 0 ,~ in Fig. 
3(b) and the contour image for a defocus of 1000 ,~ 
in Fig. 4(a). The saddle points are very apparent in 

the phase map for 0,~ as given in Fig. 3(d) which 
should be compared with the corresponding ampli- 
tude contour image in Fig. 3(b). Table 1 gives the 
value of r which separates these two regions as a 
function of defocus. 

Approximate limiting solutions can be derived in 
both these cases. When 2 2 3 3 r / 4 C s ~ ' f / 2 7 C s ,  the saddle 
points are given by 

O, = - ( r /  C~)U3[1 + (f/3)(2/C~r2) I/3] (24a) 

02 = ½( r~ C~ ) '/3[ 1 - ( f  / 3 )( 2/ Csr 2) '/3] 

+ i(3UE/2)(r/C~)U3[1-(f/3)(2/Csr3) '/3] (24b) 

03 = ½( r~ Cs)'/3[ 1 + (f/3)(2/Csr3) '/3] 

-i(31/2/2)(r/C~)'/3[1 +(f/3)(2/C~r3)l/3]. (24c) 

In the limit of large r they are all at 101 = (r/c~) 1/3 in 
directions 7r, 7r/3, -7r /3 .  In Fig. 4 the trend towards 
this limiting solution is apparent in Figs. 4(e) and 
(f)  for f =  200 and f =  0 ,~, respectively. Only the first 
saddle point need be considered and the second 
derivative of the argument in the exponential is evalu- 
ated as 

( i~rCff 2A )( r/Cs )2/3[ 1 + ( 2f/3 )( 2/C~r 2) ,/3] _ iTrf/2A. 

(25) 
The integral can now be written approximately as 

iA( r ) /C = 2{A/[(C~r2) '/3 - f ] } ' / 2  exp ( i rr/4) 

x exp {i(i~rCs/2A ) 

x [ ( r~ C, )4/3 _ 2( f /C , ) (  r~ C,)2/3 

-4r(r/C~)u3]}. (26) 

The other limit when f 3 /27C~ , r2 /4C~  is sig- 
nificant when r is small or f is large. 

01 = - r / f  (27a) 

02 = +(f/Cs) ' /2[1-1(Cs/f)3/E(r/Cs)] (27b) 

03 = -(f /C~)' /2[l+½(Cfff)3/2(r/Cs)].  (27c) 

The second derivatives of the argument of the 
exponential are +iTrr/2A(Cfff) 3/2 for the second and 
third saddle points and - i lr f /2A for the first saddle 
point. 

The contributions to the integral from the second 
and third saddle points are 

iA(r)/ C =4(A/r)UE(f /  C~) 3/4 exp (iTrf2/2AC~) 

x cos [(27rr/A )(f/C~) 1/2- 7rr2/Af+ 17"/4] 

(28a) 

and from the first saddle point it is 

iA(r)/ C =  2()t/f)  '/2 exp (-3~rir2/Af - i~/4). (28b) 

In our investigation of the method we did not use 
these approximate results but went back to (23) to 
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(a) (b) 

(cl (d) 

(e) (f)  

Fig. 4. Maps of the function exp[ (i0.5 zr/A ) ( C~04 - 2f02 + 4 r0) ] for 100 kV electrons, atom half-width of 0.5 A, r = 3 A and defocus, f, 
(a) 1000 A,, (b) 800 A, (c) 600 ,&, (d) 400 ,/~, (e) 200 ,&, (f)  0 A. Peak white is 5.0, the contour of integration is the x axis and the 
dots mark the saddle points. The bar corresponds to 10 mrad. 
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Table 1. Values of position r where r 2= 4f3/27C~ 

f defocus (A) r position (A) 
200 0.34 
400 0.97 
600 1.7 
800 2"75 

1000 3"84 

find the roots. The imaginary parts of the scattering 
integral in (20) for various defocus values are given 
as Fig. 5 where they are compared with a calculation 
using the fast Fourier transform. The function 

g(O)=exp[(iTrCs/EA)(O4-2fO2/Cs)] (29) 

was sampled at 256 points in 0 at 1 mrad intervals. 
It was found that increasing the number of points or 
changing the sampling interval did not appreciably 
change the result. All the calculations in Fig. 5 used 
the contribution from one saddle point. In the region 
where r2/4C~ >f3/27C3~ the differences between the 
stationary-phase integral (solid lines) and the fast 
Fourier transform (broken lines) are small. The 
stationary-phase integral does not reproduce the 
small higher-order frequency components found in 
the direct Fourier transform calculation. 

In the region near the origin where r2/4C2< 
f3/27 C3~ the contributions from all three saddle points 
should be added together. Unfortunately this appears 
to increase the discrepancy between the stationary- 
phase calculation and the fast Fourier transform 
calculation as seen in Fig. 6 where the imaginary parts 
of the integrals are compared for the sum over three 
saddle points and the contribution from the first 
saddle point. 

A condition of the steepest-descents integration is 
that the contour should dip into a steep valley between 
saddle points. The analogous condition for station- 
ary-phase integration is that the phase should oscillate 
rapidly. This condition is not properly met when three 
saddle points along the real axis are considered (see 
Fig. 3d) and this is the reason why the method is 
unreliable for small values of r. The disagreement is 
more serious for large defocus values as the region 
where r2<4f3/27C, increases in size with defocus 
(see Table 1). 

Although so far we have only considered one- 
dimensional scattering the theory can be modified to 
describe the high-resolution imaging of single atoms. 
Integrating over the azimuthal angle between 0 and 
r leaves the expression (Scherzer, 1949) 

ix)  

A(r )=  1 + iC ~ e'xp[(iTr/A)(CsO4/2-fO2)] 
o 

x Jo(2~Or/A )0 d0. (30) 

This could be put in the form required for stationary- 
phase or steepest-descent integration by taking the 
asymptotic form of the Bessel function in the 

appropriate limit given by the range of r under con- 
sideration. For small r, Jo(2~rOr/A) is of order 1 and 
for large r, 

Jo(2~rOr/A ) =  (A/rr2Or) '/2 cos (27rOt~ A - I7"/4). 

0 . 0 4  

0 . 0 2  

0.00 

-0. 02 

- 0 .  0 4  

11 
I I 

I 
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11 

k, I 

r, 
I I  
I I  
I I 

i/k Ji v ,v- 

! 
J 

- 1 0 .  0 0. 0 I0. 0 
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(a) 

: : .  C5 

C. 9-4 
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C. : :S 

.... : ' .  :-)2 

C. 3 4  

- (% R~  

t '~, 

" P h, 
%" : ',J 7 - v  v v 

,/ ~ ; j 

b,' 

- ~ O . _  S . ~ . ~ , P  ~ I@. "" 
A 

(b) 

0 . 0 4  

O. 0 2  

O. O0 

- 0 .  0 2  

- 0 .  0 4  

:' :I I] 

-i0. 0 O. 0 i0. 0 
A 

(c) 

Fig. 5. Comparison of imaginary parts of the amplitude integral 
for (a) 1000/~,, (b) 600 A, (c) 200/~, calculated by the stationary- 
phase method with one saddle point (solid lines) and the numeri- 
cal fast Fourier transform (broken lines). The accelerating vol- 
tage is 100 kV, the atom half-width is 0.5/~ and the Cs is 1 ram. 
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The integral analogous to (20) becomes 

-iA(r)/C = (A/zr2r) exp (mizr/4) 

x ~ e x p [ ( i T r C J 2 A ) ( O 4 - 2 f 0 2 / C ,  
- o o  

+ 40r /  C~ - 2 i A  IOge 0/ 7rC~)] dO. 

0 . 0 4  

C. 02 

0.00 

-0. 02 

- 0 .  04 

~/~, ~ ~ 
', i A , ,  
A ! / ,.,,. ,, ' A 

i' 
I 

-i0. 0 O. 0 I0. 0 

(a) 

0 . 0 4  

0 . 0 2  

O. O0 

- 0 .  02 

-0. 04 

A 

/i/i 
y,vv,  V k/ ' t , i l , / ,  V 

g ,1:! '4 

-iO. 0 O. 0 iC. 0 .~, 

(b) 

Fig. 6. Comparison of  the imaginary part of the amplitude integral 
calculated by stationary phase with (a) contribution from one 
saddle point, (b) contributions from three saddle points for a 
defocus, f, of  800 A,. The stationary-phase integrations are shown 
as solid lines, the fast Fourier transform results are shown as 
broken lines. The accelerating voltage is 100 kV, the atom half- 
width is 0.5/~, and the Cs is 1.0 mm. 

In practice this might not be that different from the 
integral that we have already evaluated as the IOge 0 
term is slowly varying. Another possible approach 
would be to leave the integral over azimuthal angle 
to be evaluated after the integral over 0. It is, however, 
questionable whether this would be analytically tract- 
able in the larger-r limit. 

In conclusion we have shown that integrals over 
the electron-microscope wave-front aberration func- 
tion can be performed analytically (with reasonable 
accuracy) by the method of stationary phase. We have 
applied the stationary-phase method to calculations 
of  the image variance and to the calculation of the 
amplitude observed from the one-dimensional scat- 
tering of atoms. In both cases the stationary-phase 
calculation is in good agreement with other calcula- 
tions provided the saddle points that contribute to 
the integral are not too close to each other. In practice 
it has meant that the amplitude calculations are only 
reliable when r 2 > 4f3/27C~ and only one saddle point 
contributes to the integral. By assuming a Gaussian 
representation for atomic scattering we have shown 
that atoms can be incorporated in imaging theory as 
a complex defocus. For any reasonable atomic size 
the imaginary part of the defocus is of order 20-50 A. 
This would suggest that under weak-phase-object 
conditions differences between different atoms would 
show up best near Gaussian focus. 
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